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A slight and natural extension of the traditional Korteweg-de Vries equation (KdV) allows all
(or groups) of its solitons to have the same velocity thus facilitating the application of the KdV

to realistic quantum mechanical problems.
1. Introduction

The standard version of the famous Korteweg-de
Vries equation (KdV) is given by

Ui(z,t) =voUz+6U Uz —MUgsz, (1)

where vg stands for a constant velocity with which
the system as a whole is translated in space. M
represents the dispersion constant of the medium
under consideration and the indices z and ¢ denote
partial differentiation with respect to these variab-
les. Because of its nonlinearity (1) could not be
solved completely until Gardener and collaborators
[1] discovered a simple, yet ingenious Bécklund
transformation interrelating the KdV with the
Sturm-Liouville or Schrédinger eigenvalue problem

H(I, t) Yn (11, t) = M[Wﬂ (z’ t]xz
+ U, t)pyn=Epnpn. (2)

Since the solution of (1) appears formally as the
potential of the Schrédinger equation (2), inverse
scattering methods (i.e. via the Marchenko or
Gelfand-Levitan equation) could be employed to
follow the time evolution of U (z, ¢) and to solve the
KdV completely. Last not least, this lead to the
analytical N-soliton solution, Uy(z,t), of this
equation,

Un(z,t) = —2 M[In(det F)]zz, (3)
Fiy= 6ij+ VM‘Q
“(Uoi Uop)/*(VTUoi + VUoy) » (4)

fi=exp(— )2 U[M (x — zoi — ki (t)), (5)
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and to a better understanding of the concept of
solitons in general. The constants zy; in (5) denote
the displacements the ¢ solitons (1=1,2,..., N)
have at t=0; the N by N matrix F of (3) is de-
termined by (4) and (5), in which the symbol §y;
stands as usual for the Kronecker-Delta and the
Uy are the amplitudes of the ¢ solitons. To be
specific, we give the one-soliton expression emerging
from (3) to (5):

Ui (z,t) = Usr(x — ha(¢)) (6)
=—Uq sechz(]/ UOI/2M (x — 201 — h1(2)) .

Equation (6) exhibits clearly the distinct features
of the solitons of the KdV, namely that their
amplitudes appear again in the arguments of their
formfactors. A further point of note is that — in the
case of the traditional KdV, (1), — the amplitude
appears also in the function %;(f) determining the
time evolution of the soliton, i.e.

hi(t)——"vit:2Uoit. (7)

Even more, the amplitudes of the asymptotic soli-
tons (i.e. for solitons that are far enough separated
so that they do not disturb each other) are in a
unique way related to the energy eigenvalues, E;,
of the corresponding Schrodinger problem, (2):

U(n = 2E1 = 2MK¢2 = thtz/m
with M :=h2/2m. (8)

In this relation we gave an explicit definition of the
dispersion constant M, which insinuates that we
have some intention of considering (2) indeed as the
quantum mechanical Schrodinger equation. But
before we pursue this line of thought any further,
we would like to reflect on relation (7). For water
waves, for which the KdV was originally designed,
such an amplitude-velocity dependence is quite
natural. However, recently the KdV (and/or reflec-
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tionless potentials, i.e. KdV-solitons with &;(t) = 0)
has also been applied to quantum mechanical
problems in elementary particle [2], nuclear [3], and
molecular [4] physics and in field theory [5]. The
gist of these studies is that they follow the spirit of
inverse methods, i.e. in their soliton approximations
with U (z, t) >~ Uy (x, t) this implies that the energy
eigenvalues of the discrete part of the (experimen-
tally accessable) spectrum of the Schrodinger equa-
tion (2), {Ei}i—1.», ... N serve as the only input for
evaluating the potential, the wavefunctions and
hence also the physical densities. The N-soliton
solution of the KdV is thus interpreted as the
potential of the quantum mechanical system under
consideration and the KdV should be appropriate
for describing its time evolution.

However, (7) and (8) determine the velocities of
the N KdV-solitons in a highly undesirable manner:
Different energy eigenvalues of the associated
Schrodinger problem imply automatically different
velocities of their related potential “lumps”, i.e.
KdV-solitons. If we now want to use the energy
eigenvalues {£;} to construct for the time ¢ =0 out
of the N-soliton solution of the KdV the total
potential U (z, t) of the Schrodinger equation, then
we have — due to the non-degeneracy of the one-
dimensional Schrédinger problem — necessarily
E;+=E; for ¢ <=7 (it is intended to use a pure single
particle picture with one particle in one energy
level), implying that all of the N solitons do have
different velocities. Consequently the solitons,
energy eigenvalues, potential-bags, or lumps or
particles, are to move with different velocities.
Hence, the whole “lump’’ does not remain together
as required by the physics we set out to model.
The obvious conclusion is that we may use the
results of the inverse scattering theory (correspond-
ing to KdV-solitons with the fixed time ¢t =0), but
that we can not rely on the KdV as a dynamical
evolution equation. — Hence it has to be abandoned !
Or to be modified.

Bearing these problems in mind, we would like
to go anew through the standard procedure for
deriving the KdV. Our aim is to find out whether
it is possible to obtain a modification or extension
of the KAV, which allows different solitons to have
the same velocities. In doing so, we are not just
interested in the mathematical structure of the
problem, but also in physical applications and inter-
pretations. This implies that we are not only dealing
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with number equations but with quantities that are
characterized by a number and a dimension. To be
specific, we give the potential, U (z,t), and the
energy cigenvalues, F;, in units of MeV, the length,
z, in fm, and the time, ¢, in seconds; i.e. U[MeV],
z[fm], ¢[s] implying, according to (8), M [MeV - fm2].

The equations given above are one-dimensional
ones, but the substitutions x—r and U (a,t) —
U(r,t)+ ML+ 1)/r2 (the KdV, (1), represents the
case with I=0; for [ 50 cf. e.g. (23) or [6]) together
with the condition

U@)=U(—=z) or wu(x=0)=0 9)

(which essentially fixes only the values of the zg;;
i.e. zo;=0) facilitate the interpretation of (2) as
the radial Schrodinger equation corresponding to
three-dimensional spherically symmetric systems.
Hence, the results based on (1) and (2) are not just
valid in one dimension but they hold also for this
restricted class of higher-dimensional problems.
(Since the condition z¢; = 0 implies some additional
information on the related wavefunctions, the re-
sulting potentials due to Un(x,t) are uniquely
determined — provided ¢t =0 is used — [7, 2, 3].)

In the following section it is shown how a slight
modification of the traditional procedure leads to
the extended KdV (EKdAV). In Sect. 3 attention is
drawn to the fact that similar extensions may also
be given for the higher or generalized KdVs (cor-
responding to !=0, cf. [6]) and to the modified
KdV which is intimately related to (1) and (2).
Section 4 contains a short summary.

2. Derivation of the Extended KdV and Discussion

First we go through some preliminaries to assess
the possible time and velocity dependences of the
wavefunctions y,, cf. (2). To that end it is recollect-
ed that the physical content of (2) is that one gives
up the hope of solving the full many-body Schré-
dinger equation, say H(z,t) ¥(z,t) = 10;¥, and
that one makes the (physical) assumption that the
interaction in H may be represented by an averaged
mean field U generated by all N constituents of the
system. (A compromise between this reduced prob-
lem and the desire to get a solvable system is to
allow U to depend still on the time, thus retaining
at least some reminiscence of the dynamics of the
system.) Due to such a physical picture it is only
natural to expect the mean field to couple the
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different single-particle wavefunctions, y,, with
each other. Hence, it is not unreasonable to expect
their arguments to be of the form (x; — + K;)

N
Yn (2, t) = wn( > ai(x — xoi + vot—vct))- (10)

1=1

The symbols used have been defined in the intro-
duction; e.g. the v; are the velocities of the single-
particle wavefunctions and hence also the ones of
the associated potential contributions and densities.
Introducing the constants L;=[fm/MeV -s] we
now rewrite expression (10) as

w

o (x — os (11)
1

i=

+ (vo/Lo) Lot — 4 EtLit)),

Yu (2, t) = pa (

where the E; are as before the energy eigenvalues
corresponding to the wavefunctions ;. It is readily
seen that the constants L; and the generalized
times 7;[fm/MeV], defined by

Ti:= Lit, (12)

are not that much characteristic for the system as
a whole but rather for its i-th wavefunction (soli-
ton). Hence, we refer from now on to 7; as the
eigentime of the i-th component/wavefunction of
the system. It is the ‘“‘time” with which the y;
evolve with the “velocity” v; =4 E;. Rewriting now
wn(z,t) and the Schrodinger equation (2) in the
forms

Y (2, T) = ya(2,1) (13)

N
= Yn (Z ot ( — 2oi + (vo/Lo) To — 4E; Ti)
=1

and
H(xa T) 'Pn (Z, T) = M["Pn (.’L', T)]xx:
+ U, 7) Yn = En'llin

we complete the preliminaries by defining the oper-
ator 0/07 in terms of the 0/0t, i.e.

(14)

N

A:= 0,4 =040 = Y 04[07;. (15)
i=0

To simplify the notation we identified 4 Ey with

vo/Lo; Lo=1fm/MeVs.

Now we continue in the traditional way [8], the
only differences being that we use the (eigen) time ¢
instead of the usual ¢ and that we are a bit more
careful with the dimensions of the quantities in-
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volved. — The potential in (14) depends on 7 but
we want the E, to be independent of this variable
(or t) so that we demand as usual

0:E,=0. (16)

This condition for an isospectral flow of the Schré-
dinger problem is satisfied if there exists an unitary
operator, 7', connecting time-dependent Hamil-
tonian and wavefunctions with the time-independ-
ent one, i.e.

H(x,7)=TH(z,0) T+ and

Yu (2, 7) = T yu(z,0) (17)
or

Ur(x,7) = Hy(x,7)=[B,H(x,7)] and

yz(z,7) = Bya(x, 7), (18)

where the squared brackets denote the traditional
quantum mechanical commutator and where the
anti-Hermitian operator B remains to be specified.
The first non-trivial choice for B is well known to
be given by [1, 8]

Bz =a3 D3+ a1 D + ay (19)
=—4MD34+3(UD+DU) + vo D[Lg

(but for the Lo which is required here to ensure the
correct dimensions) resulting in the equation

Ur@,7) =voUs/Lo+ 6 U Uz — M Ugzy. (20)

It is easily verified that (20) reduces for L;=1 fm/
MeVs to the standard KdV of (1). To distinguish
between the two versions we refer to the one with
L; =1 as the extended KdV (EKdV).

The numerical values of the constants L; are still
at our disposition. With the appropriate choices,
e.g. Li=vp/4E; (1=1,2,..., P<N) and L;=
vp/4E;(j=P+1, P+2,..., N)they may be used
to give groups (or all) of the N solitons different
(or the same) velocities. In contrast to the tradi-
tional KdV they may move to the ‘right” or to
the “left”. In view of the fact that the character-
istics (i.e. in particular their nonlinear superposi-
tion) of the N-soliton expression of the KdV, cf.
(3) to (5), are obviously in no way influenced by the
time dependence ¢ or 7 of Uy(z,t); such a result
could have been anticipated in advance. — In this
sense our findings are naturally implicity already
contained in older published work, yet, due to a
bias induced by the application of the KdV to fluid
dynamics, this is usually not recognized.
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3. Extended and Higher KdVs and Extended
Modified KdV

All the findings related to the extended KdV may
be carried over to the higher or generalized KdVs.
This can most easily be seen by taking recourse to
the concept of hereditary symmetries and operators
introduced by Fuchssteiner [9], who showed that
the operator

b=—-MD2+4U +2U, D!

D1((Uy)) = OfU(ads

with

(21)

is hereditary. In here it suffices to recollect that
this implies that repeated action of @ on the right-
hand-side of U, = U,, i.e.

Uz(x, 7) = @1(Uy) (22)
generates successively a sequence or family of
equations, the descendants, all of which possess the
same symmetries, conservation laws, etc. The ap-
propriate hereditary operator giving “birth” to the
KdV and its generalizations or higher forms is given
by (21). It leads to

Ur(@,7) =P1Uy=6U Uy — M Upyy, (23)
Up(,7) = DP2U,, = M2Us;, — 10 M UUpzz — 20 M
: Uy Uzz +30 U2 Uy,

Uz, ) =P*Uz,=. . . . . « o« v v o o « . ,

which are readily checked to be indeed the (E)KdV
and its generalizations. (To keep closer to the ex-
pressions commonly given in literature, we used
vo=0; usually one takes also M =1 and the
operator 0; = 0/t instead of 0;.)

It is not problematic to check that the whole
procedure of Section 2. may be extended to any
other (nonlinear) evolution equation. But without
going through its derivation or its interrelation
with the traditional version of the modified KdV,
its extended version, the EmKdV is given:

Ve(x, 7) = vo Va/Lo+ 6 V2 Vo — M Vygs . (24)

The reason for doing so is motivated by the fact
that it is the Miura (Backlund) transformation
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referred to at the very beginning, i.e.
U=V2+ MV, with V=: VM [yalz/yn »
(25)

which helped Gardener et al. [1] to establish for the
first time the famous interrelation of the KdV with
the Schrodinger equation. — Recollecting that,
according to the definition of Wigner’s R-matrix,
the logarithmic derivative of the wavefunction is
expected to yield information on the resonances of
quantum mechanical systems this extended version
of the modified KdV is far from being of purely
academic interest.

4. Summary

Interpreting the (linear) scattering problem related
to the KAV as the quantum mechanical Schrédinger
equation — instead of viewing it as the classical
Sturm-Liouville equation — the derivation of the
KdYV is revisited. Dimensional considerations and a
change of emphasis from the derivative in respect
to the time t to the characteristic generalized
eigentime 7, 9;:= > 0ty with i=0,1,...,N, are
shown to lead to an extended version of the KdV,
the EKdV. The EKdV retains the attractive fea-
tures of the conventional KdV and its soliton
solutions (the characteristics of which may be taken
from (3) to (5)). Yet, via the constants L; (cf.
Sect. 2), the numerical values of which are still at
our disposition, it allows for more general time
dependences than its literature version, (1).

Mathematically speaking, the extensions are of
a rather trivial nature (unless the use of the opera-
tor 0; is insisted on, which would require recourse
to an anti-Hermitian time-dependent operator B,
cf. (18)). However, it is only these extensions which
make it possible to introduce the EKdV and
especially its solitons as a new and highly economic
tool into nonrelativistic quantum mechanics.

It has been demonstrated [2] that the use of the
inverse scattering method allows to circumvent the
specific problems associated with the KdV-solitons.
But since this procedure has to dispose completely
of the dynamics of the system (it corresponds to
the use of the N-soliton expression with the fixed
time ¢t =0), the derivation of the EKdV presented
above does indeed imply a distinct achievement
facilitating further applications of the EKdV to
quantum mechanics (and possibly stimulating
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similar considerations for other nonlinear evolution
equations):

The coupling of Schrédinger equation and EKdV
leads to a physically sensible closed self-consistent
system providing (hopefully) the basis for the con-
struction of a realistic nonrelativistic field theory.
Preliminary qualitative and quantitative results
[2—5] support this notion which originally moti-
vated the above derivation of the EKdV.
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